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Rio de Janeiro
December 2016

DBD
PUC-Rio - Certificação Digital Nº 1321845/CA



Paula Ceccon Ribeiro

Uncertainty Analysis of 2D Vector Fields
through the Helmholtz-Hodge Decomposition

Thesis presented to the Programa de Pós-Graduação em In-
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Abstract

Ceccon, Paula; Lopes, Hélio (advisor). Uncertainty Analysis of 2D
Vector Fields through the Helmholtz-Hodge Decomposition. Rio
de Janeiro, 2016. 109p. D.Sc. Thesis — Departamento de Informática,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

Vector field plays an essential role in a large range of scientific

applications. They are commonly generated through computer simulations.

Such simulations may be a costly process because they usually require high

computational time. When researchers want to quantify the uncertainty in

such kind of applications, usually an ensemble of vector fields realizations

are generated, making the process much more expensive. The Helmholtz-

Hodge Decomposition is a very useful instrument for vector field interpretation

because it traditionally distinguishes conservative (rotational-free) components

from mass-preserving (divergence-free) components. In this work, we are going

to explore the applicability of such technique on the uncertainty analysis of

2-dimensional vector fields. First, we will present an approach of the use

of the Helmholtz-Hodge Decomposition as a basic tool for the analysis of

a vector field ensemble. Given a vector field ensemble E , we firstly obtain

the corresponding rotational-free, divergence-free and harmonic component

ensembles by applying the Natural Helmholtz-Hodge Decomposition to each

vector field in E . With these ensembles in hand, our proposal not only

quantifies, via a statistical analysis, how much each component ensemble is

point-wisely correlated to the original vector field ensemble, but it also allows

to investigate the uncertainty of rotational-free, divergence-free and harmonic

components separately. Then, we propose two techniques that jointly with

the Helmholtz-Hodge Decomposition stochastically generate vector fields from

a single realization. Finally, we propose a method to synthesize vector fields

from an ensemble, using both the Dimension Reduction and Inverse Projection

techniques. We test the proposed methods with synthetic vector fields as well

as with simulated vector fields.

Keywords
Helmholtz-Hodge Decomposition; Vector-Fields; Uncertainty Quantifi-

cation; Stochastic Simulation; Vector Field Synthesis.
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Resumo

Ceccon, Paula; Lopes, Hélio. Análise de Incertezas em Campos
Vetoriais 2D com o uso da Decomposição de Helmholtz-Hodge.
Rio de Janeiro, 2016. 109p. Tese de Doutorado — Departamento de
Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

Campos vetoriais representam um papel principal em diversas aplicações

cient́ıficas. Eles são comumente gerados via simulações computacionais. Essas

simulações podem ser um processo custoso, dado que em muitas vezes

elas requerem alto tempo computacional. Quando pesquisadores desejam

quantificar a incerteza relacionada a esse tipo de aplicação, costuma-se

gerar um conjunto de realizações de campos vetoriais, o que torna o

processo ainda mais custoso. A Decomposição de Helmholtz-Hodge é uma

ferramenta útil para a interpretação de campos vetoriais uma vez que

ela distingue componentes conservativos (livre de rotação) de componentes

que preservam massa (livre de divergente). No presente trabalho, vamos

explorar a aplicabilidade de tal técnica na análise de incerteza de campos

vetoriais 2D. Primeiramente, apresentaremos uma abordagem utilizando a

Decomposição de Helmholtz-Hodge como uma ferramenta básica na análise

de conjuntos de campos vetoriais. Dado um conjunto de campos vetoriais

E , obtemos os conjuntos formados pelos componentes livre de rotação, livre

de divergente e harmônico, aplicando a Decomposição Natural de Helmholtz-

Hodge em cada campo vetorial em E . Com esses conjuntos em mãos, nossa

proposta não somente quantifica, por meio de análise estat́ıstica, como cada

componente é pontualmente correlacionado ao conjunto de campos vetoriais

original, como também permite a investigação independente da incerteza

relacionado aos campos livre de rotação, livre de divergente e harmônico. Em

sequência, propomos duas técnicas que em conjunto com a Decomposição de

Helmholtz-Hodge geram, de forma estocástica, campos vetoriais a partir de

uma única realização. Por fim, propomos também um método para sintetizar

campos vetoriais a partir de um conjunto, utilizando técnicas de Redução de

Dimensionalidade e Projeção Inversa. Testamos os métodos propostos tanto

em campos sintéticos quanto em campos numericamente simulados.

Palavras-chave
Decomposição de Helmholtz-Hodge; Campos Vetoriais; Quantificação de

Incertezas; Simulação Estocástica; Śıntese de Campos Vetoriais.
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1
Introduction

Many authors consider uncertainty as a metadata representing the lack of

knowledge about a model (Viard et al., 2011). Such metadata includes several

unknowns (Potter et al., 2013), as for example: errors, deviations, missing

information, or confidence levels. The objective of uncertainty analysis is to

quantify the uncertainties of the relevant variables of a model. Aligned with

visualization techniques, this kind of analysis can provide valuable assistance

for decision-making tasks. According to Ware (2013), visualization is important

to decision making because it provides the ability to comprehend large amounts

of data; it allows us to perceive emergent properties that were not anticipated;

it enables problems with the data to become immediately apparent; and it

facilitates not only an understanding of the features of the data in different

scales but also the formation of a hypothesis.

Uncertainty Visualization studies methods to encode uncertainty inform-

ation in combination with the primary data into different graphics primitives

(which includes color, glyph and texture) so that the visual perception is not

overloaded. This overloading problem is a big challenge for visualization re-

searchers because there is a limited number of visual channels (such as spatial

position, color, texture, and opacity) that can be used. As Potter et al. (2012)

highlight, to move from quantified uncertainty to visualized uncertainty we of-

ten need to simplify the uncertainty data to make it fit into the available visual

representation. That challenge promotes Uncertainty Visualization as one of

the top research problems in visualization research (Mihai & Westermann,

2014; Johnson & Sanderson, 2003).

Vector fields, on the other hand, are ubiquitous in a large range of ap-

plications in Scientific Computing (Laidlaw et al., 2005; Forsberg et al., 2009),

encompassing different problems such as fluid flow simulation, weather fore-

casting, the aerodynamic design of cars and aircrafts, and fingerprint match-

ing. A very useful mathematical tool to distinguish conservative (rotational-

free) components from mass-preserving (divergence-free) components is the

Helmholtz-Hodge Decomposition (HHD) (Chorin, 1968), which defines a vec-

tor field as the sum of three L2-orthogonal components: a rotational-free term,

a divergence-free term and a harmonic term. This suitable decomposition al-
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lows us to simplify the analysis of complex flows by studying the divergence-free

and rotational-free related properties separately (Pascucci et al., 2014). In the

2D case, the rotational-free and divergence-free solutions are given in terms of

scalar potentials, which are obtained by solving Poisson equations.

In Scientific Computing, most of the vector field data come from sim-

ulations, which may introduce uncertainty from different sources (Laccarino,

2009). To overcome this situation, multiple instances are often generated. This

approach helps to predict and quantify the range of outcomes, allowing us

to classify features according to their stability across instances because their

locations are affected by uncertainty (Mihai & Westermann, 2014).

1.1
Motivation

In one hand, it is recognized that the Helmholtz-Hodge Decomposition

simplifies the analysis of vector fields, once some important properties can

be studied directly on the components (Bhatia et al., 2013). Indeed, in

atmospheric dynamics this decomposition has a relevant role in meteorology

(Holton & Hakim, 2012). For example, the higher energy air flows are described

by wind rotational (divergence-free) component (Chen & Tribbia, 1981).

Moreover, the simulated kinetic energy (related to the squared norm of

the velocity vector) is evaluated through the analysis of the rotational and

divergent wind components (Blažica et al., 2013). There are other applications,

beyond wind dynamics, in which the study of the decomposed components

matters, such as the analysis of turbulent flows by the use of Particle Image

Velocimetry (PIV) (de Silva et al., 2013) and the study of complex flows

using Particle Tracking Velocimetry (PTV) (Sadati et al., 2011), which shows

to be very important for understanding and designing polymeric liquids. In

applications like these, several realizations are usually simulated/acquired to

compose a reliable ensemble of the flow behavior.

In the other hand, Modeling a physical spatial/temporal phenomenon is

a very important task on several decision making applications (Beccali et al.,

2003). To represent uncertainty is for sure a relevant step on this task not only

because there is an incomplete understanding of the process itself, but also

because it is difficult to restrict their physical parameters (Mariethoz & Caers,

2014).

The modeling methods of several physical phenomena under uncertainty

have two building blocks: a deterministic and a stochastic. Deterministic

models come up with physically-based simulated outcomes. Stochastic models

try to provide realizations that somehow cover the uncertainty space and at the
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same time mimic the physics (providing a certain level of realism) (Mariethoz

& Caers, 2014).

1.2
Contributions

Firstly, we aim to explore the applicability of the Helmholtz-Hodge

Decomposition on the uncertainty quantification of vector fields. To do so,

we first explore the uncertainty analysis of vector fields ensembles using an

approach based on such method. In our approach, from a given vector field

ensemble E , we firstly generate the corresponding rotational-free, divergence-

free and harmonic component ensembles by applying the Natural Helmholtz-

Hodge decomposition (Pascucci et al., 2014) to each vector field in E . With

these ensembles in hand, our proposal not only quantifies how much each

component ensemble is point-wisely correlated to the original vector field

ensemble (via statistical analysis), but also allows the uncertainty investigation

of rotational-free, divergence-free, and harmonic components separately.

Secondly, because vector fields are very important in a variety set of

decision making problems related to Scientific Computing, we present two

new stochastic methods to generate 2D vector fields from a single realization,

as well as one to synthesize vector fields from an ensemble. The stochastic

methods are based on the concepts of Bootstrapping and Interpolation. The

vector fields synthesis from an ensemble, on the other hand, makes use of

Multidimensional Reduction and Inverse Projection. Applications that make

use of vector fields include, for example: fluid flow simulation (Anderson &

Wendt, 1995), analysis of MRI data for medical prognosis (Tong et al., 2003)

and weather prediction (Luo et al., 2012), just to cite a few. The deterministic

simulation of vector fields in such applications may require expensive numerical

computations (Anderson & Wendt, 1995).

The stochastic generation of physically realistic vector fields realizations

is a challenging task. Many algorithms for multivariate stochastic simulation

are based on very complex probabilistic models (Popescu et al., 1998; Xiu,

2009; Lall et al., 2016) and generally they are not adequate to mimic physical

phenomena such as wind, for example.

1.3
Dissertation Outline

The remainder of this document is organized as follows: Firstly, Chapter

2 describes some related works regarding the applicability of the HHD, as well

as previous works in the fields of uncertainty quantification and visualization.
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It also presents related works of the techniques used in this work, like the Boot-

strap and the Multidimensional Projection. Then, Chapter 3 presents the defin-

ition and mathematical background related to the Helmholtz-Hodge Decom-

position. After that, Chapter 4 presents an uncertainty quantification approach

for 2D vector field ensembles, followed by two methodologies to stochastically

generate 2D vector field realizations from a single sample (Chapter 5) and one

approach to synthesize vector fields from an ensemble (Chapter 6). Finally,

Chapter 8 presents some final remarks and future works.

All simulations and methods here presented were developed using Python

2.71 and the following libraries/packages:

– Pillow 3.22;

– Matplotlib 1.5.13;

– Numpy 1.11.14;

– Scikit-learn 0.18.05

– Scipy 0.17.16.

1.4
Publications

The uncertainty quantification approach for 2D vector field ensembles

that will be presented in Chapter 4, as well as its results, was previously

published7 in the Computer & Graphics Journal8, Volume 55.

1http://www.python.org
2http://pypi.python.org/pypi/Pillow
3http://matplotlib.org
4http://www.numpy.org
5http://scikit-learn.org
6http://www.scipy.org/
7http://dx.doi.org/10.1016/j.cag.2016.01.001
8http://www.elsevier.com/locate/cag

http://www.python.org
http://pypi.python.org/pypi/Pillow
http://matplotlib.org
http://www.numpy.org
http://scikit-learn.org
http://www.scipy.org/
http://dx.doi.org/10.1016/j.cag.2016.01.001
http://www.elsevier.com/locate/cag
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2
Previous Works

This Chapter aims to describe some previous works related to the topics used

in this Thesis.

2.1
Helmholtz-Hodge Decomposition

For a complete study regarding the Helmholtz-Hodge Decomposition, Bhatia

et al. (2013) present a survey. Among the methods to obtain the HHD, the least

squares finite element minimizes an energy function to obtain the rotational-

free and divergence-free components (Polthier & Preuß, 2003; Tong et al.,

2003). This technique can be applied to a piece-wise constant vector field,

which is defined on the triangles of the mesh and results in potential functions

defined on the vertices of the mesh. Another technique is smoothed particle

hydrodynamics, which is commonly used to simulate fluid flows (Monaghan,

1992). With this approach, it is possible to approximate the differential

operators and, consequently, the Poisson equation of the HHD (Petronetto

et al., 2010). Finite Difference Methods can also be used to numerically

approximate differential operators to compute the HHD components (M. &

Michel, 2010). Other techniques include the use of Fourier (Hinkle et al., 2009)

and Wavelet (Deriaz & Perrier, 2009) domains.

The HHD is unique in unbounded domains for flows vanishing at infinity

(Pascucci et al., 2014). However, for closed domains its uniqueness is guaran-

teed by enforcing some boundary conditions. It is well known, though, that

imposing boundary conditions may introduce artifacts that were not present

in the original field, because the boundary conditions create a strong depend-

ency between the vector-field components and the shape and orientation of the

boundary. Pascucci et al. (2014) introduced a new method called the Natural

HHD (NHHD), which computes, on a point-wise basis, an artifact-free HHD on

vector fields with open boundaries or unknown boundary conditions. A concise

description of this method is given in Chapter 3; this is the method adopted

in this work to obtain the decomposition.

The HHD has been used in a large range of applications. Gao et al. (2010)

used the HHD to detect singularities for fingerprint matching, in which singular
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points play a major role. The authors also proposed a combination of this

technique with the Poincare index to obtain better performance in detecting

singular points. Their results show that the proposed method is robust to noise

in fingerprint image analyses.

Wang & Deng (2014) applied the HHD in the field of complex ocean

flow visualization and analysis for feature extraction. The authors affirmed

that using the HHD facilitates the process of detecting features, because after

the decomposition both the rotational-free and divergence-free components are

considerably less sensitive to noise compared to the original field. They con-

clude that the proposed method is able to detect the majority of critical points,

with some inaccuracy at the boundary caused by the boundary conditions ad-

opted, which are a requirement of the HHD.

In addition to these examples of HHD applications, we may cite cardiac

video analysis (Guo et al., 2006), hurricane eye tracking (Palit, 2005), and the

aerodynamic design of cars and aircrafts (Tong et al., 2003).

2.2
Vector Field Uncertainty

Wittenbrink et al. (1996) proposed the use of glyphs to visualize vector field

uncertainty, graphically representing not only the mean direction and length,

but also the uncertainty in direction and magnitude. Lodha et al. (1996)

presented a set of methods for visualizing uncertainty in streamlines of flow

data generated by different integration algorithms. These methods include

glyphs, envelopes, animations, priority sequencing, trace viewpoints, and rakes.

For time-dependent vector field uncertainty visualization, we may cite the work

of Botchen et al. (2005), which introduced two texture-based techniques.

An approach to visualize the global uncertainty of vector fields is presen-

ted by Otto et al. (2010). To create this visualization, the authors considered

the uncertainty of a particle location transported by the flow, using particle

density functions to describe the probability that a particle is at a certain loc-

ation. They used the Monte Carlo approach to integrate probabilistic particle

paths. After testing with synthetic and real data sets, they concluded that

the amount of computational time required is still significant. Moreover, they

mentioned that the proposed method produces fewer uncertain critical points

than the true amount presented by the input field, and they stated that their

technique could be interpreted as a topology simplification method.

Petz et al. (2012) presented a general framework for extracting prob-

abilistic local features from uncertain vector fields under consideration of the

spatial correlation structure. To perform this task, they defined probabilistic
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equivalents to critical points in uncertain 2D and 3D vector fields and cores

of swirling motion in 3D. Such equivalents are also computed by the Monte

Carlo integration.

Pfaffelmoser et al. (2013) introduced a method to analyze and visualize

the variability of gradients in uncertain 2D discrete scalar fields. They first

derived confidence intervals for the strength of the derivative in any direction

and orientation. To visualize the derivative strength, they proposed an scheme

using color diffusion to simultaneously show the data values and gradient

variations. They also used circular glyphs to convey the uncertainty in gradient

orientation. Results showed that their approach is useful to analyze the

stability of uncertain 2D scalar fields with respect to both local derivatives

and feature orientation.

A study to analyze the stability of critical points in uncertain scalar fields

is provided by Mihai & Westermann (2014). The authors derived confidence

intervals based on the gradient of the scalar ensemble to identify possible

locations of critical points. Using the Hessian matrix, they were also able

to identify the tendency of the critical points to behave similarly to the

maxima, minima or saddle near a specified location. Their results illustrate

how the proposed methods emphasize the possible critical points in ensembles

of uncertain scalar fields.

2.3
Visualization of Data Correlations

Jen et al. (2004) proposed a tool named ImageSurfer, which aims to visualize

correlations between two scalar field volumes. Sauber et al. (2006) presented

the Multifield-Graphs, which is a very interesting approach to visually under-

stand the correlation of multiple scalar fields. Their proposal not only allows

an easily identification of which field correlate to another, but also reveals

the strength of their correlation. Pfaffelmoser & Westermann (2012) proposed

interactive visualization tools to help to analyze correlation structures in un-

certain 2D scalar fields, which are modeled by multivariate Gaussian distri-

butions. They also presented a correlation clustering algorithm that groups

points of the domain according to a criterion based on correlations. Another

interesting work is the one produced by Pfaffelmoser & Westermann (2013),

which introduced a glyph-based visualization model that uses correlation as an

indicator of uncertainty in 3D scalar fields. Finally, we should mention again

the work of Petz et al. (2012), which used local covariance structures to analyze

the uncertainty in vector fields.

DBD
PUC-Rio - Certificação Digital Nº 1321845/CA



Uncertainty Analysis of 2D Vector Fields through the Helmholtz-Hodge
Decomposition 20

2.4
Stochastic Simulation

The stochastic generation of physically realistic vector fields realizations is a

challenging task. In one side, many algorithms based on probabilistic models

for multivariate stochastic simulation (Popescu et al., 1998; Xiu, 2009; Lall

et al., 2016) are very complex mathematically speaking and generally they

are not adequate to mimic physical phenomena such as wind, for example. In

the other side, there are several geostatistical methods in the literature dedic-

ated to the stochastic simulation of spatial physical phenomena (Lantuéjoul,

2013). Generally, they are applied to the generation of univariate continuous

or categorical functions defined on a 2D or 3D grid. They usually propose a

parametric model of uncertainty to formulate the lack of knowledge, and mod-

els based on variogram are the most traditional ones (Oliver & Webster, 2014).

Alternatively, non-parametric approaches, such as the ones based on Multiple-

Point Statistics (MPS), have received a lot of investigation in the last five

years. These approaches generate realizations of a spatial phenomenon based

on a training image, which implicitly describes the phenomenon’s construc-

tion process (Mariethoz & Caers, 2014). These methods have a very strong

connection with computer graphics’ texture synthesis techniques (Mariethoz

& Lefebvre, 2014), like Image Quilting (Efros & Freeman, 2001), for example.

2.5
Bootstrap

The Bootstrap method is a statistical method based on resampling with

replacement. It is commonly applied to measure the accuracy of statistical

estimators (Efron, 1979). In general, such accuracy could be defined in terms

of bias, variance, confidence intervals, prediction error or some other dispersion

measure. This technique has been applied to visual computing problems, such

as: performance evaluation for computer vision systems (Cho et al., 1997),

searching for radial basis function parameter (Liew et al., 2016), evaluation of

the influence of hidden information on supervised learning problems (Wang &

Deng, 2014) and edge detection (Fu et al., 2012), among others.

2.6
Dimensionality Reduction

Dimensionality Reduction techniques have been largely applied to different

problems and research areas. For instance, Casaca et al. (2012) proposed

the use of multidimensional projection for image colorization. Through an

interactive tool, users can manipulate the projected data to improve clusters
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and the colorization results. By the time of the study, the authors concluded

that their technique outperformed existing techniques in terms of accuracy and

flexibility.

As another example, we can cite its applicability on the visual analysis of

social network. In (Martins et al., 2012), the authors describe each individual as

an array of attributes, projecting them in a low dimensional space. Hence, they

are able to visually encode individuals that are highly related to one another.

They also conclude that the achieved results present better node distribution

when compared to conventional force-based graph drawing.

Finally, other applications of dimensionality reduction include sentiment

analysis (Kim & Lee, 2014), face recognition (Schroff et al., 2015) and texture

and email classification (Liu & Fieguth, 2012; Gomez & Moens, 2012).
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3
The Helmholtz-Hodge Decomposition

3.1
Vector Fields

A scalar field is a map f : Rn → R that assigns a real number to each

point in Rn. A vector field is a map V : Rn → Rn that assigns a vector in Rn to

each point in its domain. In this work, we will deal with 2-dimensional vector

fields. Thus, here a vector field V(x, y) on R2 has two component scalar fields

that will be named V1 and V2. In this chapter, we establish other notations

and present some useful properties of vector fields.

– Gradient

The gradient of a scalar function f : R2 → R is a function from R2 to

R2 given by:

∇f =

(
∂f

∂x
,
∂f

∂y

)
(3-1)

where ∂f
∂x

and ∂f
∂y

correspond to the partial derivatives of f in relation to

x and y, respectively.

– Divergence

The divergence of a vector field V : R2 → R2 is given by:

∇ ·V =

(
∂

∂x
,
∂

∂y

)
· (V1,V2)

=
∂V1

∂x
+
∂V2

∂y

(3-2)

The divergence of a vector field is a real-valued function measuring at

each point in its domain the amount of flow generated in an infinitesimal

region around it (Polthier & Preuß, 2003).
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– Curl

For a 2-dimensional vector field, the curl of V is defined as:

∇×V =

〈(
∂

∂x
,
∂

∂y

)
, (V1,V2)

〉

=

(
∂V2

∂x
− ∂V1

∂y

)
= ∇ · (V2,−V1)

= ∇ · J(V1,V2)

= (∇ · J)V

(3-3)

where J is defined as:

J(u, v) = (v,−u) (3-4)

We now define some special cases of vector fields. They are:

– Potential Vector Field

A vector field V is called potential if there is a scalar field ϕ as:

V = ∇ϕ (3-5)

The scalar field ϕ is called potential scalar field of V. When a vector

field V is defined over a simply connected domain, then V is a potential

vector field if and only if its curl is null, i.e.:

(∇ · J)V = 0 (3-6)

– Solenoidal Vector Field

A vector field V is called soleinoidal if it is defined by the curl of another

vector field ψ, i.e.:

V = (∇ · J)ψ (3-7)

The field ψ is called potential vector of V. A vector field is solenoidal if

and only if its divergence is null, i.e.:

∇ ·V = 0 (3-8)

– Harmonic Vector Field

If a vector field is both potential and solenoidal, it is called an harmonic

field. So, an harmonic field satisfies the following conditions:
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∇ ·V = 0

(∇ · J)V = 0
(3-9)

3.2
Helmholtz-Hodge Decomposition for 2D Vector Fields

The Helmholtz-Hodge Decomposition (HHD) (Chorin, 1968) states that

any vector field V, defined in a simply connected domain, can be described as

a sum of three orthogonal components:

V = ∇ϕ+ (∇ · J)ψ + h (3-10)

where ∇ϕ is the rotational-free term, (∇ · J)ψ is the divergence-free term and

h is the harmonic term (Figure 3.1).

3.1(a): V 3.1(b): ∇ϕ

3.1(c): (∇ · J)ψ 3.1(d): h

Figure 3.1: The HHD states that a vector field (a) is composed by a rotational-
free (b), a divergence-free (c), and a harmonic component (d). The color bar
represents the vector magnitudes.
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Based on the explanation presented by do Carmo (2008), in the following

it will be show how to derive the Helmholtz-Hodge Decomposition for 2-

dimensional vector fields.

As presented before, it is known that:

(∇ · J)∇ϕ = 0

∇ · (∇ · J)ψ = 0

(∇ · J)h = 0

∇ · h = 0

Applying the divergence on both sides of Equation 3-10 results in:

∇ ·V = ∇ · (∇ϕ) +∇ · (J(∇ψ)) +∇ · h
= ∇ · (∇ϕ) + 0 + 0

= ∇ · (∇ϕ)

(3-11)

And, applying the curl in the same equation we have:

(∇ · J)V = (∇ · J)(∇ϕ) + (∇ · J)(J(∇ψ)) + (∇ · J) · h
= ∇ · J(∇ϕ) +∇ · J((J(∇ψ))) +∇ · J(h)

= 0 +∇ · (−∇ψ) + 0

= −∆ψ

(3-12)

Now, one can find the divergence-free and rotational-free components of

a 2-dimensional vector field V with the following linear equation system:{
∇ ·V = ∆ϕ

(∇ · J)V = −∆ψ
(3-13)

where ∇ϕ is the potential component and J(∇ψ) is the solenoidal component.

The harmonic field h can be obtained using:

h = V −∇ϕ− J(∇ψ).

The HHD is unique on unbounded domains for flows vanishing at infinity.

However, most practical cases deal with flows on bounded domains, where

the HHD is not unique (Pascucci et al., 2014). Still accordingly to Pascucci

et al. (2014), the fundamental reason for non-uniqueness in the HHD is that

harmonic flows are both divergence-free and rotational-free. Then, one can add

an arbitrary harmonic flow to any one of the three HHD components, and its

negative to another, to obtain a different valid decomposition. As a result, any

two valid HHDs differ in only how the harmonic flow is represented. Therefore,

to obtain an unique solution for closed domains, some boundary conditions

should be established. The normal-parallel (NP) boundary condition is the
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most commonly used, which requires the divergence-free and the rotational-

free components to be parallel and normal to the boundary, respectively:{
∇ϕ× n = 0

(∇ · J)ψ · n = 0
, (3-14)

where n represents the outward normal to the boundary.

Another possible boundary condition is to impose constant potentials

on the boundary, which implies the rotational-free component normal to the

boundary and the divergence-free tangent to it (Petronetto et al., 2010).

However, such conditions may introduce artifacts that were not observed in

the original field due to the imposed dependency between the vector field

components and the shape and orientation of the boundary. To overcome this

problem, Pascucci et al. (2014) proposed the Natural HHD (NHHD):

V∗ = ∇ϕ∗ + (∇ · J)ψ∗ + h∗ (3-15)

This technique separates the components by its influences, which can

be internal or external. Here, ∇ϕ∗ is the natural divergence and (∇ · J)ψ∗

is the natural rotational. They represent the components influenced by the

divergence and rotational of V inside the domain. On the other hand, h∗ is

the natural harmonic, which is influenced only by the exterior of the domain.

Pascucci et al. (2014) use an integral kernel called the Green’s Function,

G(x,xi,j), to solve the Poisson and Laplace equations. Such function is defined

as the potential created at xi,j due to an impulse source represented by the

Dirac Delta Function located at x:

∇2G(x,xi,j) = δ(x− xi,j)

For a single source located at x in an infinite domain, it is also called the

Free-Space Green’s Function, G∞ = G∞(x,xi,j), and it is given by:

G∞(x,xi,j) =
1

2π
log(‖x− xi,j‖) xi,j,x ∈ R2

With this knowledge, the natural potentials can be computed as:

{
ϕ∗(xi,j) =

∫
Ω
G∞∇ ·V(x) xi,j,x ∈ Ω

ψ∗(xi,j) = −
∫

Ω
G∞(∇ · J)V(x) xi,j,x ∈ Ω

, (3-16)

where Ω is a bounded subset of Rn and V : Ω→ Rn, for n = 2.

According to Pascucci et al. (2014), the only limitation of the NHHD is

that it does not guarantee the components to be L2-orthogonal. However, they

consider that, for applications in visualization and analysis, orthogonality is
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not required. Instead, they seek to preserve properties like flow topology, which

can be attributed to the interior and exterior of the domain.

3.3
Implementation Details

Pascucci et al. (2014) also defined an approach to compute the integration

over the domain. Considering C, E and I the set of vertices in Sm,n at the 4

corners, at the boundary (not including the corners) and the interior of Sm,n
(where S is a grid of size m×n), respectively, the integral of a function f over

Sm,n can be obtained by applying the following integration method:

∫
Sm,n

f(x, y)δxδy ≈ ∆x∆y

4

(∑
v∈C

fv + 2
∑
v∈E

fv + 4
∑
v∈I

fv

)
where ∆x and ∆y represent the grid spacing in the x and y directions,

respectively, and fv is the value of f at vertex v.

In this work, to calculate the required partial derivatives on Sm,n, we

adopted the Finite Difference Methods. More specifically, we apply the central

finite difference in the interior nodes of Sm,n, using the kernels defined in

Equations 3-17 and 3-18 for the x and y derivatives, in that order. Along

the boundary of Sm,n, we apply either forward finite difference or backward

finite difference, according to the boundary point position. These derivatives

are used to approximate the curl, the divergence and the gradient operators.

1

2h
·
[
−1 0 1

]
, (3-17)

1

2h
·

 1

0

−1

 (3-18)
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4
Uncertainty Analysis of Vector Field Ensembles

In this Chapter, we will present the application of the Helmholtz-Hodge

Decomposition as a tool for the analysis of 2D vector field ensembles, described

by Ribeiro et al. (2016). In summary, given a vector field ensemble E , we first

compute the corresponding rotational-free, divergence-free and harmonic com-

ponent ensembles by using the Natural Helmholtz-Hodge Decomposition on

each vector field in E . With these ensembles in hand we are able not only

to quantify, via a statistical analysis, how much each component ensemble

is point-wisely correlated to the original vector field ensemble, but also in-

vestigate the uncertainty of the rotational-free, divergence-free and harmonic

components separately.

4.1
Motivation

It is important to notice that the Helmholtz-Hodge Decomposition has

been successfully applied to different fields (Petronetto et al., 2010; Palit, 2005;

Wiebel, 2004; Polthier & Preuß, 2003).

Using the Helmholtz-Hodge Decomposition in the analysis of 2D vector

field ensembles can improve the understanding of the flow kinematics because:

– It allows the identification of regions where a set of vector field realiza-

tions is dominated by an extensional flow (rotational equals to zero) or

regions where it behaves like an incompressible flow (divergence equals to

zero). In some applications like blow molding and fiber spinning, to verify

that extensional flow is the dominant type of deformation is important

(Huang et al., 2013).

– It facilitates the analysis of each decomposed component ensemble dir-

ectly. This is central for the verification of theories, and for the under-

standing of non-linear rheological properties of sampled complex flow

ensembles (Sagis & Fischer, 2014; van Oudheusden et al., 2007). In sev-

eral studies the interest is mainly concentrated in the divergence-free

derived ensemble (Sadati et al., 2011).

– It enables the study of each component ensemble uncertainty. The un-

certainty analysis of vector field ensemble is significant for the complete
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understanding of the flow behavior (Petz et al., 2012; Pfaffelmoser et al.,

2013).

4.2
Uncertainty Model

Given a probability space (Ω,F , P ) and a discrete sampling of a 2-

dimensional domain on a Cartesian grid structure Sm,n = {xi,j ∈ R2 : 1 ≤
i ≤ m, 1 ≤ j ≤ n}, we model the data uncertainty by using a two-valued

random field V, i.e., a collection of two scalar-valued random variables, named

S1 and S2, indexed by the elements in Sm,n (Adler, 1981).

Once we are applying the NHHD to the vector field, it is also necessary

to define how we quantify the uncertainty of the potential scalar fields and

their respective gradient fields.

Suppose that the underlying data uncertainty is represented by an

ensemble E = {V1, . . . ,VR} of R realizations of 2-dimensional vector fields

Vr, with r ∈ {1, . . . , R}, at all spatial points in Sm,n. Also, suppose that for

each 2-dimensional vector field realization Vr ∈ E , we have its NHHD at each

xi,j ∈ Sm,n:

Vr(xi,j) = ∇ϕr(xi,j) + (∇ · J)ψr(xi,j) + hr(xi,j) (4-1)

After applying the NHHD on each element Vr ∈ E , we define two other

scalar random field ensembles with R realizations at each xi,j ∈ Sm,n. The

first ensemble is the rotational-free scalar potential ensemble C = {ϕ1, . . . , ϕR}
and the second ensemble is the divergence-free scalar potential ensemble D =

{ψ1, . . . , ψR}.
From the C and D scalar potential ensembles is then possible to derive the

corresponding rotational-free and divergence-free vector fields ensembles. The

rotational-free vector field components ensemble, denoted by EC, is obtained

by computing the gradient of the potential field ensemble C at each xi,j ∈
Sm,n. The divergence-free vector field component ensemble, denoted by ED, is

obtained by calculating the gradient of the potential field ensemble D and by

applying the J operator at each xi,j ∈ Sm,n.

Given the divergence-free and rotational-free components, the harmonic

component for each realization could be directly determined by the following

equation:

hr = Vr −∇ϕr − J(∇ψr) (4-2)

Additionally, we can group these R realizations of the harmonic compon-

ents to build the harmonic vector field component ensemble, EH.
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4.3
Uncertainty Quantification

According to Potter et al. (2013), two particular summary statistics stand

out as the de facto characterization: mean and standard deviation. These

statistics reduce uncertainty to an expected value and variation from that

value and are particularly effective in expressing normally distributed data.

Given that, to compute the uncertainty of the magnitude and orientation of a

vector field ensemble F ∈ {E , EC, ED, EH}, we calculate the standard deviation,

which measures the amount of dispersion from the average value.

For instance, let us define, for each F ∈ {E , EC, ED, EH}, the mean vector

field as:

VFµ (xi,j) =
1

R

R∑
r=1

VFr (xi,j),

where VFr is a vector in the ensemble F .

To measure the uncertainty about the magnitude, we use the following

standard statistical estimators (Wasserman, 2004) at each point xi,j ∈ Sm,n:

µFmag(xi,j) =
1

R

R∑
r=1

||VFr (xi,j)||

and

σFmag(xi,j) =

√√√√ 1

R− 1

R∑
r=1

(||VFr (xi,j)|| − µFmag(xi,j))2

Finally, to quantify the uncertainty of the scalar field potential ensembles

C = {ϕ1, . . . , ϕR} and D = {ψ1, . . . , ψR}, we also compute the mean and

standard deviations at each point xi,j ∈ Sm,n:

µϕ(xi,j) =
1

R

R∑
r=1

ϕr(xi,j),

σϕ(xi,j) =

√√√√ 1

R− 1

R∑
r=1

(ϕr(xi,j)− µϕ(xi,j))2,

and

µψ(xi,j) =
1

R

R∑
r=1

ψr(xi,j),
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σψ(xi,j) =

√√√√ 1

R− 1

R∑
r=1

(ψr(xi,j)− µψ(xi,j))2

To measure the correlation between the vector field in the given ensemble

E and the vector fields of each component ensemble derived from the NHHD,

at each point xi,j ∈ Sm,n, we adopted the Spearman’s Rank Correlation.

The Spearman’s Rank Correlation coefficient is a non-parametric correl-

ation coefficient that measures the strength of association between two ranked

random variables, i.e., the statistical dependence between them (Croux & De-

hon, 2010). Its objective is to measure how well the relationship between two

variables can be described by a monotonic function.

Given two samples of size n, say A = {Ai; i = 1, . . . , n} and B = {Bi; i =

1, . . . , n}, the Spearman’s Rank Correlation coefficient is calculated using

the variables ai and bi, which represent the rank of Ai and Bi, respectively,

according to a sorting criterion, as follows:

ρ = 1− 6
∑
d2
i

n(n2 − 1)
, (4-3)

where di = ai − bi is the difference between ranks.

With this knowledge, the correlation between the vector field and its

components is calculated for each xi,j ∈ Sm,n, between the original ensemble

E and each component ensemble generated by the NHHD: EC, ED, EH.

For the r-th vector VFr (xi,j) on the ensemble F ∈ {E , EC, ED, EH} at

xi,j ∈ Sm,n, we compute its similarity to the mean vector field of the original

ensemble at that point, VEµ(xi,j), according to the following formula:

simFr (xi,j) = 〈VFr (xi,j),V
E
µ(xi,j)〉.

We have chosen this measure of similarity because it is simple and it

comprehensively includes the magnitude and the orientation aspects of the

two vector fields.

After performing this computation, for each vector VFr (xi,j), we sort

simFr (xi,j) in ascending order for each ensemble in F .

Let ar be the rank position of the mean vector field of E , and let bGr be

the rank position of the r-th vector in G ∈ {EC, ED, EH}. In a next step, using

Equation 4-3, we evaluate at each point xi,j the Spearman’s Rank Correlation

of the mean vector field and the NHHD component ensemble G, obtaining

ρG(xi,j).

With the three correlation coefficients of the corresponding rotational-

free, divergence-free and harmonic components in hand, we could clas-

sify at each point in the grid which component ensemble is more cor-

DBD
PUC-Rio - Certificação Digital Nº 1321845/CA



Uncertainty Analysis of 2D Vector Fields through the Helmholtz-Hodge
Decomposition 32

related to the original ensemble by just computing the maximum of

{ρEC(xi,j), ρ
ED(xi,j), ρ

EH(xi,j)}.

4.4
Results and Discussion

Tests using the proposed technique were carried out with two data

ensembles: a synthetic ensemble and a simulated ensemble. In the following,

we present the results obtained for each of these ensembles.

4.4.1
Synthetic Data Ensemble

Input Ensemble The synthetic data ensemble is obtained constructing a

vector field ensemble from 100 randomly generated rotational-free and diver-

gence-free potentials. A rotational-free realization is given by:

ϕ(x, y) = e−((x−x0)2+(y−y02)/2) − e−((x−x12)+(y−y12)/2),

where (x0, y0) and (x1, y1) are the coordinates of the source and the sink,

respectively. The coordinates of these two points are obtained by adding a

random vector (z1, z2), where zi is a normal random variable with 0 mean and

variance 1, to the points (3,−3) and (−3,−3), respectively.

The divergence-free potential realization, on the other hand, is given by:

ψ(x, y) = e−((x−x2)2+(y−y22)/2),

where (x2, y2) is the coordinate of the vortex center, which are also obtained

by adding a random vector (z1, z2), where zi is a normal random variable with

0 mean and variance 1, to the point (0, 3).

Given R = 100 realizations of each potential field, the vector field

ensemble E is given by the summation of ∇ϕ and J(∇ψ). We set the harmonic

component as zero. The vector field’s domain is the square [−6, 6] × [−6, 6]

and it is discretized in a grid with size 100× 100.

Results Henceforth, we will refer to the vector field ensemble as E . With E in

hand, we perform the NHHD to obtain the rotational-free and divergence-free

scalar potentials ensembles C and D. Then, through the NHHD we compute the

rotational-free ϕr and divergence-free ψr potentials for each element Vr ∈ E .

Figure 4.1 presents the maps of the means for the C and D scalar potential

ensembles, i.e., the maps of µC and µD. Figure 4.2, on the other hand, shows
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their standard deviation. Through this figure, we can see that the uncertainty

regarding the potential fields has a non-symmetric behavior close to the points

defined as the main vector field’s features (where the noise was added).

4.1(a): Rotational-free potential
mean: µC

4.1(b): Divergence-free potential
mean: µD

Figure 4.1: Maps of the means of the rotational-free and divergence-free
potential ensembles. Positive contours are represented by continuous lines and
negative contours are represented by dashed lines.

4.2(a): Rotational-free potential
standard deviation: σC

4.2(b): Divergence-free potential
standard deviation: σD

Figure 4.2: Standard deviation of the rotational-free and divergence-free poten-
tials. Contours represent the mean potential fields. Positive contours are rep-
resented by continuous lines and negative contours are represented by dashed
lines.

Figure 4.3 shows the mean vector fields for the synthetic ensemble E
as well as for its corresponding rotational-free EC, divergence-free ED, and

harmonic EH ensembles, in that other.
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4.3(a): Vector field mean: µE 4.3(b): Rotational-free mean: µEC

4.3(c): Divergence-free mean: µED 4.3(d): Harmonic mean: µEH

Figure 4.3: Mean vector fields obtained through the NHHD for the synthetic
data ensemble E . The color represents the vectors’ magnitude, while the color
scale is common for all NHHD components. However, the size of the rendered
vectors is re-scaled on each subfigure for better visualization.

Figures 4.4 (a), (b) and (c) show the results of the Spearman’s Rank

correlation between each component ensemble and the original ensemble E ,

computed as explained in Section 4.3. In Figure 4.4 (d), we show the max-

imum correlation classification. Color is used to represent which of the three

components — rotational-free (blue), divergence-free (white) and harmonic

(red) — has the maximum correlation value at each point. With this approach

is possible to observe areas where each of the component ensembles is more

correlated to the original ensemble.

Finally, Figure 4.5 shows the ensemble standard deviation regarding the

magnitude.
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4.4(a): Rotational-free / vector-field
correlation

4.4(b): Divergence-free / vector-field
correlation

4.4(c): Harmonic / vector-field cor-
relation

4.4(d): Maximum correlation classi-
fication

Figure 4.4: Correlation between the vector field ensemble E and each of its
NHHD component ensemble.

Analysis With he proposed approach, it is possible to analyze the contribu-

tion of each component — rotational-free, divergence-free and harmonic — to

the total uncertainty of the ensemble magnitude (Figure 4.5). In this specific

example, one can see that no significant overlap can be found in the magnitude

uncertainty of the rotational-free and divergence-free components. However, if

an overlap does exist, this technique may clarify how each component contrib-

utes to the uncertainty of a region. For instance, it is possible to perceive that

the harmonic component uncertainty slightly overlaps both the divergence-free

and rotational-free components uncertainty in two regions, at the top (1) and

right (2) borders. Using the correlation information depicted in Figure 4.4, we

can now observe that the divergence-free component is the major contributor
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4.5(a): Original ensemble magnitude
standard deviation

4.5(b): Rotational-free magnitude
standard deviation

4.5(c): Divergence-free magnitude
standard deviation

4.5(d): Harmonic magnitude stand-
ard deviation

Figure 4.5: Standard deviation of the magnitude of the rotational-free,
divergence-free and harmonic components.

to the uncertainty of region (1), as expected. The same occurs with region

(3), with its uncertainty coming from the rotational-free component. As to re-

gion (2), though, we notice that, at the right border, the harmonic component

contributes more than the rotational-free component.

4.4.2
Wind Forecast Ensemble

Input Ensemble This set is comprehended by seven multi-method wind

forecast realizations E , generated by the Instituto Nacional de Pesquisas

Espaciais (INPE), Brazil. Each ensemble member defines a possible realization

of a wind forecast for a region delimited by 35◦48′S and 83◦W as the minimum

latitude and longitude coordinates (DMS), respectively, and by 6◦12′N and
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25◦48′W as the maximum latitude and longitude coordinates, in that order.

The data is discretized in a 144× 106 grid.

Results We apply the NHHD to each realization of the weather forecast

ensemble to obtain the rotational-free and divergence-free components of the

vector fields: C and D. Figure 4.6 illustrates the mean maps of the C and D
potential data ensembles, i.e., the maps of µC and µD. Figure 4.7 shows the

corresponding standard deviation maps of the potential ensembles.

Figure 4.8 presents the mean vector field of the forecast ensemble E and

the mean vector field of its corresponding rotational-free EC, divergence-free

ED and harmonic EH ensembles.

Figures 4.9 (a), (b), and (c) show the Spearman’s correlation between

the original vector field and the rotational-free, divergence-free and harmonic

components, respectively. Figure 4.9 (d) shows the components which have a

greater point-wise correlation with the vector field. In this figure, a blue, white

and red points correspond to the rotational-free, divergence-free, and harmonic

components, respectively.

Finally, Figure 4.10 illustrates the uncertainty related to the magnitude.

Analysis As we have seen, through this approach it is possible to note how

the uncertainty of each component contributes to the original field uncertainty.

For instance, looking at Figure 4.10 we can state that the uncertainty of region

(1) has a strong contribution from the rotational-free component. However, in

this region we could also observe a small contribution from the divergence-free

magnitude uncertainty. When analyzing Figure 4.9, it is possible to perceive

that the core of this region is indeed formed by the rotational-free component.

However, it is surrounded by the uncertainty that comes from the divergence-

free component. Analyzing only Figure 4.10, we might also conclude that

the magnitude uncertainty in region (2) has a strong contribution from the

rotational-free component ensemble. With the proposed technique, one can

verify that the uncertainty magnitude in this region is, indeed, defined by

the rotational-free component uncertainty. Region (3), on the other hand,

seems to have a strong contribution from the uncertainty of the divergence-

free component. Nevertheless, analyzing the correlation between the original

vector field and its components, we can perceive that this region, besides

having its core related to the uncertainty of the divergence-free component, its

also influenced by the harmonic and rotational-free components uncertainty.

Something similar occurs with region (4). The uncertainty in this region seems

to have a main contribution from the divergence-free component, with some
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4.6(a): Rotational-free potential mean: µC

4.6(b): Divergence-free potential mean: µD

Figure 4.6: Maps of the rotational-free and divergence-free potential ensembles
mean. Positive contours are represented by continuous lines and negative
contours are represented by dashed lines.

contribution coming also from the rotational-free magnitude’s uncertainty.

However, with the correlation data, we found that region (4) is mainly

correlated to the rotational-free component. At last, notice that, from Figure

4.10, we can assume that uncertainty in the magnitude in region (5) has a

strong contribution from the uncertainty of the divergence-free magnitude. In

that case, Figure 4.9 shows that the core of these regions is, in fact, defined by

the rotational-free component.

Unfortunately, for this data set there are no relevant meteorological

discovery observed in the analysis. However, an important fact observed in the

analysis of this example is that we could find regions in the ensemble domain

where one component dominates the flow but another component contributes

strongly to the uncertainty in the magnitude, which is related to kinetic energy.

According to an atmospheric data analyst opinion, in recent meteorolo-

gical analysis, the simulated kinetic energy of the rotational and divergent wind

components shows to be crucial for the wind forecasting analysis (Blažica et

al., 2013). Moreover, this kind of analysis could be improved by taking into ac-

count the uncertainties because it is pivotal for observing the balance between
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4.7(a): Rotational-free potential standard deviation: σC

4.7(b): Divergence-free potential standard deviation:
σD

Figure 4.7: Standard deviation of the rotational-free and divergence-free po-
tentials.

these energies (Chen, 1980; Chen & Tribbia, 1981).

4.4.3
Final remarks

To better analyze the proposed approach, we performed another exper-

iment. Its goal was to investigate the correlation analysis approach when the

given ensemble is composed by pure divergence-free vector fields. To perform

such an analysis, we consider as an input ensemble the derived divergence-free

ensemble obtained from the application of the NHHD on the wind forecast

data set. Figure 4.11 shows the mean vectors of the resulting NHHD decom-

position. The result of the correlation analysis, illustrated in Figure 4.12, shows

that this pure divergence-free vector field ensemble is mostly correlated to the

divergence-free component, as expected. We can observe that there is a noisy

region around the border and that there are some points in the interior domin-

ated by the other components. The norms of the vectors at such points are very

small, in their great majority. In terms of the vector magnitude uncertainty, we

can observe in Figure 4.13 that the uncertainty on the derived divergence-free

ensemble is quite similar to the uncertainty on the input ensemble. Although
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4.8(a): Vector Field mean: µE

4.8(b): Rotational-free component mean: µEC

4.8(c): Divergence-free component mean: µED

4.8(d): Harmonic component mean: µEH

Figure 4.8: Mean vector fields obtained through NHHD for the wind forecast
data ensemble. The color represents the vectors’ magnitude, while the color
scale is common for all NHHD components. The size of the rendered vectors
is individually scaled in each subfigure for better visualization.
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4.9(a): Rotational-free / vector-field correlation

4.9(b): Divergence-free / vector-field correlation

4.9(c): Harmonic / vector-field correlation

4.9(d): Maximum correlation

Figure 4.9: Correlation between the vector field and the magnitude of each of
its components.
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4.10(a): Vector field magnitude standard deviation

4.10(b): Rotational-free magnitude standard deviation

4.10(c): Divergence-free magnitude standard deviation

4.10(d): Harmonic magnitude standard deviation

Figure 4.10: Standard deviation of vector magnitude in the rotational-free,
divergence-free, and harmonic component ensembles.
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the harmonic and the rotational-free ensembles obtained by the NHHD present

some noisy regions close to the boundary, as shown in Figure 4.11, they do not

contribute significantly to the magnitude uncertainty of the original ensemble.

Finally, we also would like to mention that for ensembles having quite similar

elements, the proposed method generated component fields with low uncer-

tainty because of the robustness of the NHHD method.
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4.11(a): Vector Field mean: µE

4.11(b): Rotational-free component mean: µEC

4.11(c): Divergence-free component mean: µED

4.11(d): Harmonic component mean: µEH

Figure 4.11: Mean vector fields obtained through NHHD for the divergence-free
ensemble derived from the wind forecast data ensemble. The color represents
the vectors magnitude, while the color scale is common for all NHHD compon-
ents. The size of the rendered vectors is individually scaled in each subfigure
for better visualization.
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4.12(a): Rotational-free / vector-field correlation

4.12(b): Divergence-free / vector-field correlation

4.12(c): Harmonic / vector-field correlation

4.12(d): Maximum correlation

Figure 4.12: Correlation between the pure divergence-free vector field and each
of its NHHD derived component ensemble.
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4.13(a): Vector field magnitude standard deviation

4.13(b): Rotational-free magnitude standard deviation

4.13(c): Divergence-free magnitude standard deviation

4.13(d): Harmonic magnitude standard deviation

Figure 4.13: Standard deviation of vector magnitude in the derived rotational-
free, divergence-free and harmonic component ensembles obtained from the
NHHD of a pure divergence-free ensemble.
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5
Stochastic Generation of Vector Fields

In this Chapter, we proceed with the application of the Helmholtz-Hodge

Decomposition in the uncertainty analysis of vector fields. More specifically,

we present a set of methods to stochastically generate new realizations of a

vector field given an unique vector field realization.

5.1
Motivation

Vector fields comprehend an important mathematical object in a variety

of problems related to Scientific Computing applications. These applications

include, for example, fluid flow simulation (Anderson & Wendt, 1995), analysis

of MRI data for medical prognosis (Tong et al., 2003) and weather prediction

(Luo et al., 2012), just to cite a few. Often, those vector fields are obtained

through computer simulations, which may require expensive numerical com-

putations (Anderson & Wendt, 1995).

As previously described in Chapter 4.1, the Helmholtz Hodge Decom-

position presents a large range of applicability in the analysis of vector fields.

We believe that proposing a method to derive new realizations from a given

vector field using the HHD can be helpful because:

– It can be less time consuming than the required techniques to simulate

vector fields from scratch in some areas of Scientific Computing.

– Several realizations could provide the same set of benefits as the multi-

method ensemble presented in Chapter 4.1.

– As we are going to show, the derived realizations provide some variability

when compared to the given vector field, while not being far from it.
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5.2
Method 1: Bootstrap Based Stochastic Simulation

In this Section we propose an algorithm to stochastically simulate vector

field realizations based on a given gridded 2D vector field V, which will from

now on be called the training data. Such algorithm is based on the Helmholtz-

Hodge Decomposition and on the non-parametric Bootstrap method (Efron,

1979). The proposed algorithm aims to physically mimic V and appropri-

ately cover the space of uncertainty. More precisely, our algorithm first use

the NHHD of V to obtain its rotational-free and divergence-free potentials

components. With such potentials in hand, we perform a Bootstrap-like ap-

proach to generate R other realizations of these potentials. In the sequence, we

differentiate them. Finally, we add the generated components to the original

harmonic component to generate these R vector field realizations.

5.2.1
The Bootstrap Method

The Bootstrap method is a statistical method based on resampling with

replacement. It is commonly applied to measure the accuracy of statistical

estimators (Wasserman, 2004). In general, such accuracy could be defined in

terms of bias, variance, confidence intervals, prediction error or some other

measure.

The Bootstrap method is based on the notion of a bootstrap sample.

To better understand it, let F̂ be an empirical distribution, with probability

1/n on each of the n observed values xi, with i ∈ {1, 2, · · · , n}. Then, a

bootstrap sample is defined to be a random sample of size n drawn from F̂

with replacement, say x∗ = (x∗1, x
∗
2, · · · , x∗n) (Efron, 1979). The star notation

indicates that x∗ is not the actual data set x, but a randomized, or resampled,

version of x. More details about this technique can be found in (Wasserman,

2004).

With this concept in mind, assume that Tn = g(x1, x2, · · · xn) is a

statistic of the data set {x1, · · · , xn}. To compute the variance of Tn, denoted

by VF (Tn), it would be necessary to know the distribution F of the data.

Often, however, that is unknown. The Bootstrap technique estimates VF (Tn)

by the use of stochastic simulations, where the unknown distribution F is

approximated by a distribution named F̂. Then, an approximation of VF (Tn) is

computed as VF̂ (Tn). Generating several bootstrap samples, it is now possible

to approximate the distribution of Tn by evaluating T∗n = g(x∗1, · · · , x∗n). Using

this distribution, we can finally compute the variance VF̂ (Tn) according to the

following formula:
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VF̂ (Tn) =
1

B

B∑
i=1

(
T∗i −

1

B

B∑
b=1

T∗n,b

)2

, (5-1)

where T∗i , i = 1, . . . , B, represents the statistics computed at the ith bootstrap

sample.

Figure 5.1 shows the Bootstrap sampling procedure. As can be seen, it

takes a sample data as input and, as output, a new data obtained through

resampling with replacement from the original sample is generated.

Sample
Sample PDF

Bootstrap Samples

...

1

n

Figure 5.1: The Bootstrap Method.

5.2.2
Proposed Method

Once again, consider a discrete sampling of a 2-dimensional domain on

a Cartesian grid structure Sm,n = {xi,j ∈ R2 : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Also,

suppose that a 2D vector field V is given, i.e., to each spatial point in Sm,n
there is a 2D vector associated.

The main goal of our method is to generate a new vector field that has

similar features to the training one. Precisely, the new vector field comprehends

a structural perturbation of the training vector field.

5.2.2.0
Method Overview

The first step in our method is to compute the NHHD of the training

data V. So, at each point xi,j ∈ Sm,n we have the following equality:

V(xi,j) = ∇ϕ(xi,j) + (∇ · J)ψ(xi,j) + h(xi,j).

With the NHHD components of the given training data V in hand, we

stochastically generate other R 2D vector fields based on V. To obtain each

realization, we firstly perturb the divergence-free ϕ∗ and rotational-free ψ∗
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scalar potentials at b points xi,j ∈ Sm,n, using a Bootstrap-like technique.

From these perturbed scalar potentials, we then compute the corresponding

rotational-free and divergent-free terms from their partial derivatives. We add

these two terms to the original harmonic term h∗ in order to finally create a

vector field realization.

The number b of blocks in which to perform the Bootstrap is defined by

a Poisson Distribution (Wasserman, 2004) with rate λ. This rate represents

the mean number of blocks that are going to be perturbed. The greater the λ

the higher the variability induced in the samples.

When performing the Bootstrap-like approach, as we are calculating

derivatives through discrete approximations, one may think of defining two

kernels of the same size of the central difference kernels, i.e., 3×1 and 1×3 for

the x and y directions, respectively. Then, for each xi,j, two bootstrap samples

would be created, one to calculate the x derivative and another to calculate

the y derivative. Such an approach, however, is incapable of preserving the

orientation of the vector field. As an example, regarding the vector field and

its NHHD components presented in Figure 3.1, Figure 5.2 presents a realization

generated using this approach, as well as the mean vector field obtained by

repeating this technique to generate 100 realizations.

5.2(a): Example of a single sample 5.2(b): Mean of 100 samples

Figure 5.2: Example of vector fields obtained using a kernel for the x derivative
and another for the y derivative. The color scale matches the one presented in
Figure 3.1 for comparison purposes.

As can be noted, the orientation of the vector field was completely lost.

Given that we are dealing with vector fields, we adopted an strategy to

preserve their structure during the resampling step. Such strategy is based on

a kernel proposed by Fu et al. (2012) and depicted in Figure 5.3. This kernel
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explores the directional coherence of the contours that pass through the central

pixel. As can be seen, the kernel divides a n× n block in 8 subgroups. When

performing the Bootstrap-based technique, each of these regions is resampled

with replacement separately to obtain a bootstrap sample around the central

pixel. The size of the kernel presented in Figure 5.3 is 5 × 5. The bigger the

kernel, the higher the variation of the bootstrap samples in relation to the

input data.

X 1

234

5

6 7 8

Figure 5.3: Kernel divided into regions to preserve the vector field orientation.

Once again, taking as a realization the vector field depicted in Figure

3.1, one can perceive, through Figure 5.4, that the adopted kernel is capable

of preserving the orientation of the vector field used as input for the Bootstrap

method. More than that, in regions in which the potentials are practically

constant, no noise is added to the vector field samples.

5.4(a): Example of a single sample 5.4(b): Mean of 100 samples

Figure 5.4: Example of vector fields obtained using a kernel divided in regions
to preserve the vector field orientation. The color scale matches the one
presented in Figure 3.1 for comparison purposes.
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With this knowledge, we can now specify that, in this work, λ is defined

as a percentage of the training data size divided by the kernel size.

At last, a smoothing step is performed using a Gaussian Filter (Gonzalez

& Woods, 2006), which standard deviation (σ) can be parameterized, for both

x and y dimensions.

5.2.2.0
The Algorithm

We implemented the proposed method according to the pseudocode

described in Algorithm 1. This pseudocode generates a stochastic realization

R∗ based on the NHHD components of a training data V.

The method has as input the following list of variables:

– the scalar potentials ϕ∗, ψ∗ and the vector field h∗ obtained by the NHHD

of the training data V;

– the kernel K of size l×l used to perform the resampling with replacement

on the potentials;

– the number b of blocks in which we will perform the Bootstrap.

input : ϕ∗, ψ∗, h∗, K, b
output: R∗, a vector field realization

1 ϕ∗boot ← ϕ∗;
2 ψ∗boot ← ψ∗;

/* Derive b indexes in the 2D grid */ ;
3 x← randInt(1, m, b);
4 y ← randInt(1, n, b);
/* For each derived index */ ;

5 for k ← 1 to b do
6 i← x[i] ;
7 j ← y[i] ;

8 boot indices← local bootstrap(K);

9 ϕ∗boot(i, j)← F̂ϕ(boot indices);

10 ψ∗boot(i, j)← F̂ψ(boot indices);

11 end
12 ϕ∗boot ← smooth(ϕ∗boot);
13 ψ∗boot ← smooth(ψ∗boot);
14 ∇ϕ∗R ← divergent(ϕ∗boot);
15 (∇ · J)ψ∗R ← curl(ψ∗boot);

16 R∗(xi,j)← ∇ϕ∗R(xi,j) + (∇ · J)ψ∗R(xi,j) + h∗;
Algorithm 1: Generating a realization R∗ based on the NHHD compon-
ents of a training data V using a Bootstrap-based approach.
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The input b represents the number of indexes in the 2D grid and their

locations are generated through an Uniform Distribution (Wasserman, 2004)

(lines 3 and 4). In other words, the generated indexes respect the dimensions

of the training data. These indexes represent positions in the scalar potentials

of V that are going to be perturbed using a Bootstrap-like approach.

Then, for each one of the b indexes pairs, say xi,j, we perform a local

Bootstrap (line 8) based on the input kernel K, which results in a new

organization of indexes that are going to be used to perturb the neighborhood

of xi,j. In other words, those indexes are used to assign new values to ?∗boot(i, j),

where ? can be either ϕ or ψ.

In the following, we perform a smoothing step on ?∗boot, i.e., we obtain a

smoothed version of F̂?. The smoothing step is required because a small change

in the potentials can lead to a significant change in the vector field, once this

is obtained deriving these potentials. In this work, we used σ equal to 2 pixels

in the smoothing step. This value was chosen by experimentation.

After these steps, we can now differentiate the new scalar potentials to

obtain new realizations for the divergence-free (line 14) and rotational-free

(line 15) components of V. Finally, a new vector field realization is obtained

summing these components with the original harmonic component of V (line

16), following Equation 3-10.

Repeating this procedure R times, we will then have a set of R stochastic

realizations of vector fields obtained through the original NHHD components

of V.

5.2.3
Results and Discussion

To verify the results that the proposed method can achieve, we make

use of a 2D vector field ensemble comprehended by seven multi-method wind

forecast realizations E , previously presented in Chapter 4.

As a first step, we apply the NHHD on each realization R in E to derive

its divergence-free, rotational-free and harmonic components. Those are then

perturbed as explained above to obtain new realizations based on the given

vector field.

In summary, we repeat the described procedure, i.e., we apply Algorithm

1 on each realization R in E , 100 times to generate other 100 new realizations.
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5.2.3.0
Similarity measure and MDS projection

To provide a way of visually encode the similarity between the vector

fields, we make use of the Multidimensional Scaling (MDS) (Kruskal, 1964)

technique for dimensionality reduction to visualize high-dimensional data in

a 2-dimensional space. The MDS method aims to provide insight in the

underlying structure and relations between patterns by providing a geometrical

representation of their similarities (Honarkhah & Caers, 2010). Mathematically

speaking, the MDS translates a dissimilarity matrix into a configuration of

points in a n-D Euclidean space.

For two vector fields A and B, we adopted the following similarity

measure, known as the Cosine Similarity :

similarityA,B = cos θ =
A ·B
‖A‖ · ‖B‖

(5-2)

Such a measure states how related two vector fields are given their angles.

For similar vectors the similarity coefficient will be close to 1, for opposite

vectors, such coefficient will be close to −1. For unrelated vectors, on the

other hand, this coefficient will be around 0.

To take into account both the magnitude and orientation of the vector

fields A and B in the cosine similarity computation, we perform the following

transformation.

Firstly, for a vector field V of dimensions m × n, we unroll it from a

2-dimensional vector field to a 1-dimensional vector. Then, we generate a new

vector V∗ = (V∗1,V
∗
2) based on V such as:

V∗1 = atan2(V2,V1)

V∗2 = ‖V‖
V∗ = (V1,V2)

For an ensemble E , after this step, we have a new set E∗ in hand. All

vectors in E∗ are normalized as follows:

V∗1 =
V∗1
π/2

V∗2 =
V∗2

max(V∗2 ∈ E∗)
After this transformation, we apply the similarity measure for each pair

of realizations in E∗.
Figure 5.5 presents the MDS for the wind forecast ensemble and its mean

vector µ, after applying the transformation described before. The mean vector

field µ, as well as its potentials, are depict in Figures 5.7 and 5.6, respectively.
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Figure 5.5: MDS visualization for the original ensemble E . Colors represent
each realization in E . The black square represent the mean vector of E .

5.2.3.0
Coverage Test

It is relevant to verify whether we can generate a set of realizations

that covers the given ensemble set or not. This might state if, from a single

realization, it is possible to obtain certain scenarios that could be derived

through another simulation process (possible more costly). To do this, we first

tried different values for the λ parameter given different Bootstrap kernel sizes

to generate 100 new samples from the mean vector field µ. They ranged from

30% to 90% and from 5× 5 to 17× 17, respectively.

We achieved the best coverage using a λ value of 90% and a kernel of

19× 19, as can be seen in Figure 5.8.

For this best scenario, Figures 5.9 and 5.10 show the standard deviation

of the potentials and NHHD components obtained through the proposed

approach.

From Figure 5.9, we can observe that the potentials obtained trhough

this method presented some variation, while, from Figure 5.10, we can note

that the higher standard deviation are concentrade in areas where the original

vector field presents high magnitude. It is worth noting that, once the harmonic

component remains the same as the original vector field, its variation is zero.
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5.6(a): Rotational-free potential µψ

5.6(b): Divergence-free potential µψ

Figure 5.6: Rotational-free and divergence-free potentials of µ.

Given that, Figure 5.11 present the MDS for each vector field in the

original set E and a new set of realizations derived from it using a kernel

size and λ as specified before. Markers of same color belongs to the same set,

i.e, were generated based on a common realization. Circle markers represent

each realization of the set E . Cross markers represent new realizations, and

diamond and square markers show both the closest and farthest simulation,

in that order, given a base realization – Table 5.1 depict these simulations for

each realization in E .

Through this image, we can see that, for each realization s ∈ (1, · · · , 7),

the resulting set of realizations present some variability in relation to the

original vector field used as base for the stochastic simulation method.

Putting all these simulations together, we have the result presented in

Figure 5.12. From this image, we can notice that the original set E is completely

surrounded by the new realizations.
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5.7(a): Vector Field

5.7(b): Rotational-free

5.7(c): Divergence-free

5.7(d): Harmonic

Figure 5.7: Mean vector field µ.
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Figure 5.8: MDS visualization between E and new realizations, obtained using
different kernel sizes.
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Table 5.1: Original realization and its closest and farthest realizations using
the Bootstrap-like technique.

Sample Closest Simulation Farthest Simulation
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5.9(a): Rotational-free potential standard deviation σϕ

5.9(b): Divergence-free potential standard deviation σψ

Figure 5.9: Standard deviation of the rotational-free and divergence-free po-
tentials obtained through the Bootstrap-like approach.
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5.10(a): Vector-field magnitude standard deviation

5.10(b): Rotational-free magnitude standard deviation

5.10(c): Divergence-free magnitude standard deviation

Figure 5.10: Standard deviation of the magnitude of the rotational-free and
divergence-free components using the Bootstrap-like approach.
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Figure 5.11: MDS visualization between each set of new realizations and the
original ensemble E . Colors represent each realization of the set E . Circular
markers represent each realization in E . Cross markers represent, for each V
in E , the new realizations derived from V, both represented with the same
color.
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Figure 5.12: MDS visualization between each new set of realizations and the
original ensemble E . Colors represent each realization of the set E . Circular
markers represent the realizations in E . Cross markers represent new realiza-
tions derived from the one presented with a circular marker of the same color.

5.2.4
Applications

In this Section, we present a quantification approach to the algorithm

uncertainty related to the application of the curl and divergence discrete

differential operators, described in Equation 3-18.

5.2.4.0
Navier-Stokes

Consider the vector field presented in Figure 5.13. This field is defined

over a grid of 64 × 64, with its minimum and maximum as 0.007812 and

0.992188, respectively, in both x and y directions. This field is a result of a

Navier-Stokes simulation (Chorin, 1968), which aims to describe the motion of

viscous fluid flows. Such kind of simulation can be used to model a varied set

of physics phenomena, ranging from waves simulation (Abadiea et al., 2010)

DBD
PUC-Rio - Certificação Digital Nº 1321845/CA



Uncertainty Analysis of 2D Vector Fields through the Helmholtz-Hodge
Decomposition 64

to image and video inpainting (Bertalmio et al., 2001). As can be seen, the

divergence-free component defines such field (we may consider the rotational-

free and harmonic components as noise).

5.13(a): Vector Field 5.13(b): Rotational-free

5.13(c): Divergence-free 5.13(d): Harmonic

Figure 5.13: Navier-Stokes simulation and its NHHD components.

After generating 100 new realizations through the procedure presented in

Algorithm 1, using a kernel of 5×5, we have a set of realizations E . Figure 5.14

shows the MDS for this set. As can be seen, the training data is surrounded

by the new ones.

Figure 5.15 shows the closest and farthest simulation derived from the

original vector field. They are represented using the same magnitude scale as

the original field (Figure 5.13).

With this set in hand, it is now possible to quantify the uncertainty

related to the curl operator, which is obtained using partial derivatives. In

other words, we can measure the uncertainty related to the kernel used to

obtain such attribute. To do so, for each new realization R ∈ E , we obtain the
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Figure 5.14: MDS visualization between the generated realizations set and the
Navier-Stokes vector field.

5.15(a): Closest Simulation 5.15(b): Farthest Simulation

Figure 5.15: Closest and farthest realization of the Navier-Stokes vector field.

curl of R. We do the same for the original sample V. To derive the uncertainty

of the curl operator, we then compute its root mean squared error (RMSE).

In statistics, the mean squared error, MSE, of an estimator is a way to

measure the difference between values implied by an estimator and the true

values of its target parameter (Wackerly et al., 2008).

For instance, being T̂ the curl of V and T∗i , i = 1, . . . , 100 the curl of

each one of the generated samples, the MSE of the predictor T̂ is defined as:
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MSE(T̂) =
1

100

100∑
i=1

(T̂− T∗i )
2 (5-3)

The RMSE is given as the square root of the MSE, i.e., RMSE =
√

MSE.

Figure 5.16 presents the RMSE of the curl given the generated realiza-

tions.

5.16(a): Curl of V 5.16(b): RMSE of the curl

Figure 5.16: Curl of of the Navier-Stokes vector field V (a) and RMSE of the
curl operator (b) between the set E and the realization V.

Following what was presented in Chapter 4, we can also calculate the

correlation between the NHHD components of the derived realizations and the

original vector field.

Figures 5.17 (a), (b), and (c) depict the Spearman’s Rank correlation

between these sets, computed as explained in Section 4.3. Figure 5.17 (d),

shows the maximum correlation classification. Color is used to represent which

of the three components — rotational-free (blue), divergence-free (white), and

harmonic (red) — has the maximum correlation value at each point.

As mentioned before, the original vector field seemed to be dominated by

the divergence-free component. Figure 5.17 (b) shows that the divergence-free

component of the new realizations is highly correlated with the Navier-Stokes

vector field, as expected. We can also note that the harmonic component of the

derived realizations has a high degree of correlation with the original vector

field, as opposed to the rotational-free component.

5.2.4.0
Particle-Image Velocimetry

Often, PIV applications aims to study the behavior of turbulent flows,

analyzing the stability of features such as vortices. Besides providing means to
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5.17(a): Rotational-free / vector-field
correlation

5.17(b): Divergence-free / vector-
field correlation

5.17(c): Harmonic / vector-field cor-
relation

5.17(d): Maximum correlation classi-
fication

Figure 5.17: Correlation between the Navier-Stokes vector field and each
NHHD component of the derived realizations.

perform this kind of study through the generation of different realizations, we

can go further with the new samples generated using the proposed technique.

The following PIV simulation is defined over a grid of 124 × 126. Its

horizontal dimension ranges from 0.3824 to 47.4176. On the other hand, its

vertical dimension ranges from 0.3824 to 48.1824. Figure 5.18 shows this vector

field, as well as its NHHD components. This image corresponds to a velocity

field of a gas flow that is continuously injected horizontally on the bottom

left corner and that flows on the domain from left to right until it meets a

wall (image’s right edge). It is possible to observe that the divergence-free

component seems to have a high magnitude and basically dominate the flow

behavior; we can also notice that the rotational-free component present some

DBD
PUC-Rio - Certificação Digital Nº 1321845/CA



Uncertainty Analysis of 2D Vector Fields through the Helmholtz-Hodge
Decomposition 68

features that characterize it.

5.18(a): Vector Field 5.18(b): Rotational-free

5.18(c): Divergence-free 5.18(d): Harmonic

Figure 5.18: PIV simulation and its NHHD components.

Figure 5.19 presents the MDS between the new realizations and the

original one.

Figure 5.20 shows the closest and farthest simulation derived from the

original vector field. They are also represented using the same magnitude scale

as their original field (Figure 5.18).

From Figure 5.21, we can see that, for the curl operator, the RMSE is

higher on regions with high magnitude. In such areas, the scalar field also

present high values. The same behavior happens with the divergence operator,

i.e., we have a higher uncertainty in areas where the magnitude of the vector

field is also higher.

Figure 5.23 presents the correlation between the NHHD components

of the derived realization and the original field. As with the Navier-Stoke

realizations, we can observe that for PIV the divergence-free and harmonic

components also present a high correlation with the original vector field
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Figure 5.19: MDS visualization between the generated realizations set and the
PIV vector field.

5.20(a): Closest Simulation 5.20(b): Farthest Simulation

Figure 5.20: Closest and farthest simulation of the PIV vector field.
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5.21(a): Curl of V 5.21(b): RMSE of the curl

Figure 5.21: Curl of the PIV vector field V (a) and RMSE of the curl operator
(b) between the set E and the realization V.

5.22(a): Divergence of V 5.22(b): RMSE of the divergence

Figure 5.22: Divergence of the PIV vector field V (a) and RMSE of the
divergence operator (b) between the set E and the realization V.

DBD
PUC-Rio - Certificação Digital Nº 1321845/CA



Uncertainty Analysis of 2D Vector Fields through the Helmholtz-Hodge
Decomposition 71

(Figures 5.23 (b) and (c)). However, in this case, we can also note that

the rotational-free component defines important features in those realizations

(Figure 5.23 (a)). Nevertheless, when put together, such vector field is still

dominated by the divergence-free and harmonic components (Figure 5.23 (d)).

5.23(a): Rotational-free / vector-field
correlation

5.23(b): Divergence-free / vector-
field correlation

5.23(c): Harmonic / vector-field cor-
relation

5.23(d): Maximum correlation classi-
fication

Figure 5.23: Correlation between the PIV vector field and each NHHD com-
ponent of the derived realizations.
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5.3
Method 2: Interpolation Based Stochastic Simulation

In this Section we present a different method to stochastically generate

vector fields given a sample. It also uses the Helmholtz-Hodge Decomposition

as a base step. The rest of it, on the other hand, is based on using an

interpolation method to derive a realization.

5.3.1
Proposed Method

As defined in Section 5.2.2, our method is defined over a discrete sampling

of a 2-dimensional domain on a Cartesian grid structure Sm,n = {xi,j ∈ R2 :

1 ≤ i ≤ m, 1 ≤ j ≤ n}. For a given 2D vector field V, consider it also defined

over Sm,n, i.e., to each spatial point in Sm,n there is a 2D vector associated.

Henceforth, we will call this 2D vector field V the training data.

5.3.1.0
Method Overview

Once again, we firstly compute the NHHD of the training data V,

obtaining its components as previously depict in Equation 3-15. Given p

random points xi,j ∈ Sm,n we create a new realization with pre-known values

at those points, according to the values of V in xi,j. Those points are going

to be used to derive the complete realization through an interpolation step.

Finally, we perform a smoothing step to filter any noise that may be added.

5.3.1.0
The Algorithm

A pseudocode of the proposed method can be found in Algorithm 2. This

pseudocode generates a realization R∗ based on the NHHD components of a

training 2D vector field V.

It also expects as input the following list of variables:

– the scalar fields ϕ∗, ψ∗ and the vector field h∗ obtained by the NHHD of

the training 2D vector field V;

– number p of points to be randomly chosen.

For a number of points p, p points are randomly generated, being

resampled without replacement (lines 4 and 5). These points are going to

be fixed and used to interpolate and, thus, derive a new realization. More

specifically, those points are going to be set as known in the scalar potentials
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input : ϕ∗, ψ∗, h∗, p
output: R∗, a vector field realization

1 n,m← size(ϕ) ;
2 ϕ∗itp ← empty matrix of n×m ;

3 ψ∗itp ← empty matrix of n×m ;

/* Derive p indexes in the 2D grid */ ;
4 x← randInt(1, m, p);
5 y ← randInt(1, n, p);
/* For each derived index */ ;

6 for k ← 1 to p do
7 i← x[k] ;
8 j ← y[k] ;

9 ϕ∗(i, j)itp ← F̂ϕ(i, j);

10 ψ∗(i, j)itp ← F̂ψ(i, j);

11 end
12 ϕ∗itp ← interpolation(ϕ∗itp);

13 ψ∗itp ← interpolation(ψ∗itp);

14 ϕ∗itp ← smooth(ϕ∗itp);

15 ψ∗itp ← smooth(ψ∗itp);

16 ∇ϕ∗R ← divergent(ϕ∗itp);

17 (∇ · J)ϕ∗R ← curl(ψ∗itp);

18 R∗(xi,j)← ∇ϕ∗R(xi,j) +∇× ϕ∗R(xi,j) + h∗;
Algorithm 2: Generating a realization R∗ based on the NHHD compon-
ents of a training data V using an interpolation approach.

that define the input vector field, i.e., in ϕ∗ and ψ∗. Note that these points can

be select independently for these potentials.

Through a cubic interpolation, we obtain the potentials ϕ∗, ψ∗. After

that, we apply a smoothing function on it to reduce any noise that may be

inserted. Here, we also use a Gaussian filter with σ equal to 2.

Now we can obtain the divergence-free (line 16) and rotational-free (line

17) components of V. At last, we obtain a new vector field realization (line

18) as stated in Equation 3-15.

5.3.2
Results and Discussion

To verify the achieved results we make use of the same data set previously

presented in Section 5.2.3, comprehended by seven multi-method wind forecast

realizations E .

Once again, the proposed method firstly obtain the divergence-free,

rotational-free and harmonic components of each realization R in E , using

the NHHD. Through Algorithm 2, we derive 100 new realizations for each R

DBD
PUC-Rio - Certificação Digital Nº 1321845/CA



Uncertainty Analysis of 2D Vector Fields through the Helmholtz-Hodge
Decomposition 74

in E . These will be visualized using the MDS technique, following the same

procedures defined in Section 5.2.3.

5.3.2.0
Coverage Test

As done in Section 5.2.3, our first evaluation of the proposed method

consists in verifying if it is capable of providing some variability while gener-

ating valid realizations. Here, we define as valid the given realizations present

in E . Using the mean vector field of E , µ (previously presented in Figures 5.7

and 5.6), we try to derive a new set of realizations containing the members

of E . To do so, we performed Algorithm 2 on E using different numbers for p.

Figure 5.24 shows the obtained results.

From this figure, we might conclude that using p as 0.01% of the vector

field dimension results in a set of realizations that covers all members of E .

However, using a small p may result in a bad interpolation result, bad being

defined as the loss of significant features of the vector field, as its singular

points. After a visual inspection, which aimed to inspect the similarity between

the derived vector field and the training data, we observed that, for µ as the

training data, the best results were achieved with p greater or equal to 0.03%

of the size of the input vector field (Table 5.2 presents examples of realizations

for different values of p.).

For this scenario, Figures 5.25 and 5.26 depict the standard deviation of

the potentials and HHD components obtained through this approach.

As can be seen, for both potentials, the regions where the standard

deviation is greater than zero are larger then compared with the Bootstrap-like

results (Figures 5.9 and 5.10). Also, the maximum value of this deviation, in

both cases, is also higher then the one obtained with the best scenario of the

Bootstrap-based approach. Once again, there is no variation in the harmonic

component. However, as can be seen in Table 5.2, results obtained with the

interpolation-based approach are smoother then the ones obtained with the

Bootstrap-based technique (Table 5.1).

We proceed generating 100 new realizations for each vector field in the

original ensemble E , using p equal to 0.03%. Figure 5.27 shows the corres-

pondent MDS visualization. Markers of the same color belongs to the same

set, i.e, were generated based on a common realization. Circle markers rep-

resent each realization of the set E . Cross markers represent new realizations,

while diamond and square markers show both the closest and farthest simula-

tion, respectively, given a base realization – Table 5.3 depict these simulations

for each realization in E .
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Figure 5.24: MDS visualization between E and a new realizations, obtained
using different values of p.
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Table 5.2: Original data and derived realizations for different values of p.

Divergence-free potential Rotational-free potential Vector Field

Original Data

p = 0.01

p = 0.03

p = 0.05

p = 0.07

p = 0.09
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5.25(a): Rotational-free potential standard deviation σϕ

5.25(b): Divergence-free potential standard deviation
σψ

Figure 5.25: Standard deviation of the rotational-free and divergence-free
potentials obtained through the Interpolation-based approach.
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5.26(a): Vector-field magnitude standard deviation

5.26(b): Rotational-free magnitude standard deviation

5.26(c): Divergence-free magnitude standard deviation

Figure 5.26: Standard deviation of the magnitude of the rotational-free and
divergence-free components using the Interpolation-based approach.
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Figure 5.27: MDS visualization between each set of new realizations and the
original ensemble E . Colors represent each realization of the set E . Circular
markers represent each realization in E . Cross markers represent, for each V
in E , the new realizations derived from V, both represented with the same
color.
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Table 5.3: Original realization and its closest and farthest realizations using
the Interpolation-based approach.

Sample Closest Simulation Farthest Simulation
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Figure 5.28, on the other hand, present the MDS for all these realizations.

As can be seen, they mix together.
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Stress: 0.17
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Figure 5.28: MDS visualization between each new set of realizations and the
original ensemble E . Colors represent each realization of the set E . Circular
markers represent the realizations in E . Cross markers represent new realiza-
tions derived from the one presented with a circular marker of the same color.
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6
Vector Field Synthesis

In this Chapter we will present an approach to synthesize vector fields

realizations from an ensemble. In the field of Computer Graphics and Image

Processing, to synthesize an image consist in creating images from an image

description or model. Here, we have a vector field ensemble, consisting of

multiple realizations of some specific data, and we intend to use them as the

description of possible vector fields realizations.

Dimensionality reduction, or multidimensional projection, is an approach

used to represent a multidimensional data in a low-dimensional space. Its goal

consists in providing an overview of similarities between instances of data in

a projection space (Amorim et al., 2015), which can then be visually encoded

and interpreted. Many algorithms for dimensionality reduction can be found

in the literature. Among them, we can cite the well know PCA (Jolliffe, 1986),

MDS (Cox & Cox, 2000), t-SNE (van der Maaten & Hinton, 2008) and LAMP

(Joia et al., 2011).

Inverse projection, on the other hand, works in the opposite way. I.e.,

given a multidimensional data set X ⊂ Rm and its 2D projection Y ⊂ R2,

such technique allows the creation of new points in the input space, Rm, given

points in the projection space, R2.

With the knowledge that vector fields are used in a varied set of scientific

applications, we proposed applying the inverse projection technique to generate

new realizations of vector fields from an ensemble. Furthermore, using the

Helmholtz-Hodge Decomposition, we also provide an approach to derive vector

fields given ensembles of the rotational-free, divergence-free and harmonic

components.

The proposed approach can be summarized as follows: the NHHD is cal-

culated to obtain the divergence-free, rotational-free and harmonic components

that compose a given set of vector fields. Multidimensional projection is then

performed on the original data set as well as on its NHHD components. After

that, for any point p in the projection space, it can me mapped into the original

space to generate a new vector field realization.
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6.1
Motivation

The same motivations described in Section 5.1 apply here. We believe

that the main contributions of the technique to be presented consist in:

– A framework that allows the exploration of a multidimensional space to

intuitively create new vector fields;

– For several areas of scientific applications, a faster way to create new

multidimensional realizations;

– The possibility to generate new realizations from a set of possible ones,

instead of a single realization.

6.2
Inverse Projection

A Radial Basis Function (RBF) is a function with respect to the origin or

a certain point p, i.e., ψ(x) = f(‖x− p‖) with ‖ · ‖ being often the Euclidean

norm. Any function that satisfies ψ(x) = ψ(‖x‖) is a radial function, or a

radial basis kernel.

Recently, Amorim et al. (2015) proposed an inverse projection technique

based on RBF interpolation, providing a smooth and global mapping from low

to high dimensions. In RBF interpolation, for N data points Xi ∈ Rm and their

respective function values Yi ∈ R, an approximant s : Rm → R is construct

in such a way that is possible to derive the value y for any arbitrary point in

x ∈ Rm in such a way that:

s(x) =
N∑
i=1

λiψ(‖Xi − x‖), (6-1)

where λi are real-valued coefficients.

Here, the choice of the kernel affects the smoothness of the approximant

s(x).

Given that, an inverse projection using RBF interpolation will obtain a

function s : R2 → Rm mapping information from the projection space into the

original m-dimensional space.
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6.3
The Proposed Method

Consider a discrete sampling of a 2-dimensional domain on a Cartesian

grid structure Sr,c = {xi,j ∈ R2 : 1 ≤ i ≤ r, 1 ≤ j ≤ c}. Also, let E be a 2D

vector field ensemble, i.e., a 2-dimensional vector is defined at each spatial point

in Sr,c for V ∈ E . E can be viewed as a m-dimensional data set with m = r×c.
As described by Amorim et al. (2015), being Y ∈ R2 the 2D projection of E ,

for any point p ∈ R2 we want to find its m-dimensional representation, i.e., a

point q ⊂ Rm. Given the concept of RBF interpolation, we seek s(p):

s(p)k =
N∑
i=1

λkiψ(‖yi − p‖), (6-2)

where sk accounts for k-th output dimension. Note that we want a approximant

s : R2 → Rm, i.e., s(yj) = xj. Hence, we can rewrite Equation 6-2 as:

s(p)k =
N∑
i=1

λkiψ(‖yi − yj‖) = xkj (6-3)

To find the scalar coefficients λk, sk reduces to solve the the linear system

ψλk = bk, where ψ is the interpolation matrix with ψij = ψji = ψ(‖yi − yj‖),
λk = [λk1 · · ·λkN ]ᵀ and bk = [xk1 · · ·xkN ]ᵀ. With λki in hand the approximant

s is complete and can be used to derive q ∈ Rm to any given point p ∈ R2.

In this work, we are going to a Gaussian kernel ψ = e−εr
2
, where ε is a

positive parameter set to 1 and r is the Euclidean distance between a pair of

realizations.

6.3.1
Method Overview

We first obtain the NHHD for each vector field in the ensemble E . Having

the original vector fields and their NHHD components in hand, we generate

four sets of multidimensional projection, one for E and the other ones for the

each NHHD component of E , i.e., for the rotational-free, divergence-free and

harmonic components.

To perform a dimensionality reduction on a data set it is necessary to

obtain a similarity measure for each pair of instances in the data. Considering

an ensemble E of vector fields, this means that, for each pair of vector fields

Vi,Vj ∈ E it is necessary to define how close they are to each other. Here, we

use the same similarity measure as described in Section 5.2.3.

After that, there are two possibilities to generate new vector field

realizations: from a point defined in the first projection space, i.e., based on
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the original data, or from points defined in the NHHD components projection

space, i.e., through the combination of the NHHD components.

In the following, it is necessary to compute the inverse projection as

described in Section 6.3. For the first case, the final realization is directly

given by this inversion. For the second case, it is given by the sum of the

inverse projection of each of the NHHD components, according to Equation

3-15.

6.3.2
The Algorithm

A pseudocode of the proposed approach is presented in 3. This pseudo-

code generates a new realization R∗ given a point p in a projection space. It

consists of two main procedures. The first one, find lambda, is responsible to

obtain the λ matrix and takes as input the following list of variables:

– a list of points in the projection space, p[];

– the correspondent vector field, unrolled, for each given point, vf [].

The second one, inverse projection, obtain a new realization given a

point p in the projection space, taking as input the following list of variables:

– a list of points in the projection space, pr[];

– a point p, also in the projection space, to be inverted;

– the λ matrix.

The algorithm is straightforward. Firstly, it is necessary to obtain the

dimensionality reduction for the input data, being it the original vector fields

or their NHHD components. After that, it is necessary to obtain the λ matrix,

used to obtain the inverse projection for a given point p.

Note that, when generating a vector field from the input data NHHD

components, lines 1 and 2 have to be performed for each of the components.

This means that we obtain three λ matrices, one for the rotational-free

component, one for the divergence-free component and another one for the

harmonic component. We will also end up with the three NHHD components,

that have to be combined as shown in Equation 3-15 in order to obtain a new

vector field realization.

Repeating this procedure R times, for random points in the projection

space, one can generate R new vector field realizations.
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input : pr[], vf [], p
output: R, a vector field realization
/* Perform the dimensionality reduction of your choice

to obtain pr[] */ ;
1 λ← find lambda(pr[], vf []) ;
2 R← inverse projection(pr[], p, λ) ;
3 Procedure find lambda

input : pr[], vf []
/* array of len(pr) × size(vf [0]) */ ;
output: λ, lambda values that reverse each vf in vf [] to the

given space
4 n← len(pr) ;
5 m← size(vf [0]) ;

6 a← empty matrix of n× n ;
7 b← empty matrix of n×m ;
8 for i← 0 to n do
9 for j ← 0 to n do

10 a[i, j]← a[j, i]← kernel(‖pr[i]− pr[j]‖) ;
11 end

12 end
13 for i← 0 to n do
14 for j ← 0 to m do
15 b[i, j]← v[i][j] ;
16 end

17 end
/* Solve the linear system ax = b */ ;

18 return x ;

19 Procedure inverse projection
input : pr[], p, λ
output: R∗, an unrolled vector field realization

20 n← len(pr) ;
21 m← size(λ[0]) ;

22 iv ← empty matrix of n×m ;
23 for i← 0 to n do
24 for j ← 0 to m do
25 iv[j]← iv[j] + λ[i, j]∗ kernel(‖pr[i]− pr[j]‖) ;
26 end

27 end
28 return iv ;

Algorithm 3: Generating a realization through dimensionality reduction
and inverse projection.
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Figure 6.1: Multi-method wind forecast realizations. The number/color maps
each realization to its representation in the projected space.
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6.4
Results and Discussion

To test the proposed approach, we make use of a 2D vector field set

comprehended by five multi-method wind forecast realizations E , presented

before. These realizations are depict in Figure 6.1 followed by a legend of

circular markers showing how they are going to be represented into the

projected space visualization.

Firstly, we apply the NHHD on each vector field in E to obtain its

rotational-free, divergence-free and harmonic components. Those are going to

be used to derive three different multidimensional projections in R2 through

the MDS technique, plus the projection of the original set. They will provide

two different ways of generating new realizations of a wind vector field.

6.4.1
User Interface

The developed interface comprehends two ways of synthesizing a vector

field. The first one is accomplished based on the original vector field ensemble.

The second one is made through the combination of the NHHD components

that compose the original data set. In both cases, we perform a multidimen-

sional reduction, through MDS, transforming the data space from Rm to R2.

Doing that, we can provide a visualization of those data allowing an user to

generate a new realization exploring a low dimensional space, i.e., a new vector

field can be generated for any given point in the screen.

For the first case, when a point is selected in the projection space (Figure

6.2), its inverse projection is obtained, generating a new vector field based on

the discovered λ values. For the second case, in the other hand, three points

– one for each of the NHHD components – are required to generate a new

realization (Figure 6.3). Here, a new realization is obtained as the sum of the

inverse projection of each one of the given points, accordingly to the Helmholtz-

Hodge Decomposition. In both cases, results are obtained in real time.

Using the Ctrl key, a selected point is bonded to the closest projected

point. This means that, for the NHHD-based vector field generation, an

original component will be used. For example, in Figure 6.4, a new realization

was created using the rotational-free and harmonic components of the first

realization in the ensemble.
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Figure 6.2: A blue point in the top plot represents the chosen point to be used
in the inverse projection. The bottom plot shows the resulting vector field.

Figure 6.3: For each HHD component, an input point – shown in blue – has
to be given. The bottom plot shows the resulting vector field, i.e., the sum of
the vector field obtained through the inversion of each of the given points.
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Figure 6.4: Pressing Ctrl while inserting a point make it snap to the closest
one. This will fix a component of the original ensemble to be used when
generating a new realization.

6.4.2
Evaluation

To evaluate the results obtained with the proposed technique, two

experiments were performed.

6.4.2.0
Experiment 1

The first experiment consisted in qualitatively analyze the results of the

inverse projection given four extreme scenarios. By extreme we mean that

these scenarios are well defined and don’t have any feature in common. They

are depict in Figure 6.5.

Exploring this ensemble projection space, we expect to derive realizations

containing features from each one of these scenarios, with their intensity being

a factor of the proximity between the projected points and the chosen one.

The multidimensional projection for this set, as well as the chosen points to

be inverted, can be seen in Figure 6.6.

The results of the inverse projection, on the other hand, can be found in

Figure 6.7. As can be seen, the proximity of a given point to an specific vector

field (consequently, feature), states its influence in the derived realization.

For example, point (0.3, 0.0) is close to the projected point of a vector field

containing a vortex. As a result, the derived realization is dominated by such
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Figure 6.5: Synthetic realizations to test the inverse projection technique.
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Figure 6.6: MDS of the synthetic ensemble and the chosen points to be inverted.
The i-th point is related to the i-th vector field presented in Figure 6.5.
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feature. Point (−0.2, 0.4), on the other hand, is closest to a projected point that

represents a vector field comprehended by a sink. Thus, the derived realization

has this sink as it main feature. Hence, balancing the position of a point defines

how similar to each of the vector field inputs the derived realization will be.

6.7(a): (0.0,−0.4) 6.7(b): (0.3, 0.0)

6.7(c): (0.3, 0.4) 6.7(d): (−0.2, 0.4)

Figure 6.7: Inverse projection of selected points in the projection space.

6.4.2.0
Experiment 2

We generated a set of 100 points in the projection space of the original

ensemble E as well as 100 points in the projection space for each of its

components. All points were randomly chosen. After performing the inverse

projection (Tables 6.1 and 6.2 shows some of the derived realizations), we

obtained the curl and the divergence for each of the resulting vector fields to

analyze the variability provided by this technique. As can be seen in Figure

6.8, the curl of the rotational-free realizations as well as the divergence of the

divergence-free realizations are both zero, as expected. This means that the

inverse projection is not generating any significant artifact in the resulting
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vector fields. It can also be noted that the harmonic realizations provided the

higher variability, followed by the use of the original ensemble.
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Figure 6.8: Statistics of the curl and divergence of the derived realizations.

We also measured the RMSE (Wackerly et al., 2008) of the curl and

divergence between the derived realizations and the mean vector field of E .

These are depict in Figure 6.9. As can be seen, the divergence presented higher

variability then the curl. This is expected once, for the wind forecast ensemble,

the divergence-free component has more influence on the vector fields.
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Figure 6.9: Statistics of the curl and divergence operators.
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Table 6.1: Derived NHHD components.

Rotational-free Divergence-free Harmonic

[−0.64,−0.82] [0.32, 0.86] [0.77,−0.70]

[−0.29, 0.98] [−0.06,−0.85] [−0.15, 0.43]

[0.34,−0.04] [−0.89,−0.37] [−0.89, 0.97]

[0.44,−0.53] [−0.74, 0.42] [0.04, 0.24]

[0.21, 0.56] [0.76, 0.78] [−0.24, 0.3765]
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Table 6.2: Derived vector fields.

[0.07, 0.35]

[0.41,−0.67]

[−0.1, 7− 0.71]

[−0.66, 0.95]

[0.12, 0.56]
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7
Performance

Here we present the performance of the proposed techniques to

stochastically generate vector fields from a training data, as well as of the

presented approach to synthesize vector fields from an ensemble data. In all

cases, tests were performed using a machine running ubuntu 16.04 LTS with

the configuration presented in Table 7.1.

Table 7.1: Machine configuration.

Memory 62.8 GiB

Processor Intel R© Core
TM

i7-5820K CPU @ 3.30 GHz ×12
Graphics GeForce GTX 960/PCle/SSE2
OS Type 64 bit

Disk 55 GB

7.1
Stochastic Generation of Vector Fields

In the following we show the performance achieved with both methods

described in Chapter 5.2.

7.1.1
Method 1: Bootstrap Based Stochastic Simulation

For each data set presented in this work, we measured the time necessary

to compute the NHHD and to generate new realizations (as the mean of the

time spent to generate a set with 100 new samples).

Table 7.2: Performance of the proposed method per
sample, in seconds. Tested using λ equal to 90% for all
scenarios.

Forecast1 Navier-Stokes2 PIV3

NHHD 1025.775 86.497 1200.545
Samples Gen. 0.584 0.209 0.992
1 19× 19 kernel.
2 5× 5 kernel.
3 19× 19 kernel.
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As can be seen, the NHHD is the most time consuming step. However,

this step can be optimized, parallelizing the calculus by each pixel in the data,

for example. For more details on the performance of the NHHD, see (Pascucci

et al., 2014).

We also tested the effect of different kernel sizes on the samples generation

step. This is shown in Table 7.3.

Table 7.3: Performance of the sample generation step for different kernel sizes.
Tested with the wind forecast ensemble mean and λ equal to 90%.

11× 11 13× 13 15× 15 17× 17

0.613 0.612 0.580 0.577

As we can observe, the size of the kernel didn’t cause a significant change

in the algorithm performance. It is also interesting to note that, the bigger

the size of the kernel the lesser the time consumption. This means that the

bootstrap step performance is mostly affected by the number of blocks chosen,

instead of the size of the chosen kernel.

7.1.2
Method 2: Interpolation Based Stochastic Simulation

To measure the performance of this technique, we tested Algorithm 2

using the different values of p, as can be seen in Table 7.4.

Table 7.4: Performance, in milliseconds, of the interpolation based method
using different p values.

p 1% 3% 5% 7% 9%

102 120 129 135 154

7.2
Vector Field Synthesis

For the vector field synthesis method, presented in Chapter 6, we achieved

the following performance results:

– To obtain the MDS of the wind forecast data took, on average, 19.8

milliseconds.

– To generate a new realization took, on average, 84.2 milliseconds to

obtain the λ matrix.

– To compute the inverse projection took and 708 milliseconds.
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Naturally, the bigger the vector fields dimension, the more time consum-

ing these procedures will be.

For more details on the performance of this technique, see (Amorim et

al., 2015).
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8
Conclusion

This work explored the applicability of the Helmholtz-Hodge Decomposition

on the uncertainty analyses of 2-dimensional vector fields, as well as on

the stochastic generation of vector fields. Also, we proposed a technique to

synthesize vector fields from an ensemble. In all cases, results were obtained

for synthetic and real data. In the following, we are going to present some final

remarks and possible future works.

Uncertainty Analysis of Vector Field Ensembles Chapter 4 presented an

approach to analyze 2D vector field ensembles by decomposing them on the

basis of the Helmholtz-Hodge Decomposition. The main advantage of this

approach is the ability to separately study the uncertainty of the curl-free, the

divergence-free, and the harmonic component ensembles. We also proposed a

way to quantify how much each of these component ensembles is correlated to

the vector field’s original ensemble at each point in the domain. To the best of

our knowledge, this is the first work that proposes the use of HHD to help in

visually analyzing 2D vector field ensembles.

Our approach was inspired by the works of Pfaffelmoser et al. (2013)

and Mihai & Westermann (2014), which deal with uncertainty related to the

gradient of scalar fields. In contrast, we consider a general kind of vector field.

We implemented the Natural HHD (Pascucci et al., 2014) in order to

better evaluate the HHD on each element of the vector field ensemble. Unlike

other techniques that impose boundary conditions to achieve a unique solution,

the NHHD does not guarantee the components to be L2-orthogonal. Although

this technique removes the artifacts introduced by the boundary conditions

during the decomposition process, providing orthogonality may be crucial to

some applications.

The presented approach is extensible to 3D vector fields, since the NHHD

can be computed using the appropriate formulae defined by Pascucci et al.

(2014), whereas the point-wise correlation analysis simply uses the canonical

inner product of two vectors to measure similarity. However, obtaining such

decomposition in a large 3D vector field ensemble could be computationally

very expensive.
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For time-dependent vector field ensembles, we can assume temporal co-

herence and explore the proposed approach at each time step. As a con-

sequence, the temporal dependence between the component ensembles could

be an interesting subject for further investigation.

The correlation analysis shows to be a useful tool to identify regions

where a set of vector field realizations is dominated by an extensional flow

(rotational equals to zero) or regions where it behaves like an incompressible

flow (divergent equals to zero). Thus, it can improve the understanding of the

flow kinematics, which is a requirement for the rheologists to establish or to

improve constitutive equations. It is in our plan to explore the use of such tool

in sampled complex flow analysis with the supervision of a domain expert.

Regarding the wind forecasting analysis, we have an objective to find

wind data ensembles on which the uncertainty analysis could reveal a relevant

finding with the help of a meteorologist.

In terms of the methodology, we would like to study uncertainty quan-

tification methods that will access the uncertainty of critical points locations

in vector fields based on the HHD. We also aim to use the Multified-Graph

approach (Sauber et al., 2006) to better analyze the correlation between the

magnitude and orientation uncertainties among the components. Finally, we

plan to quantify the spatial dependencies in each component and measure their

relationship with the original ensemble.

Stochastic Generation of Vector Fields In Chapter 5 we proposed a

technique to stochastic generate vector fields given a single realization. Such an

approach make use of the Helmholtz-Hodge Decomposition and a Bootstrap-

based procedure. Results were evaluated using a set of multi-method wind

forecast realizations, as well as simulations from Navier-Stokes and PIV. For

each data, 100 new scenarios were generated using the presented method. We

applied the MDS technique to proper visualize the results; we could observe

that the simulated scenarios were able to provide a great variability and that

they mimic the training data.

To the best of our knowledge, this is the first approach that uses the

Helmholtz-Hodge Decomposition to stochastic generate vector fields given a

training data.

The applicability of this approach ranges from uncertainty quantification

to data assimilation (Kalnay, 2003).

Further studies includes expanding this method for 3-dimensional vector

fields. We also would like to explore techniques to measure the spacial correl-

ation, possibly using this correlation to obtain, in an automated way, the size
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of the Bootstrap kernel that best fits the input data.

Synthesis of Vector Fields In Chapter 6 we proposed the application of

dimensionality reduction and inverse projection to generate 2D vector fields

given an ensemble. Results show that this approach is capable of generating

realizations with some variability whilst respecting the given ones. Moreover,

through the Helmholtz-Hodge Decomposition, one can generate scenarios

choosing different weights for the final vector field divergence-free, rotational-

free and harmonic components. This leads to a wide range of final possibilities

for vector field realizations.

Of course, this technique could be use to generate random realizations

of vector fields based on the ensemble. To do so, we need only to generate a

random point in R2 and perform the inverse projection.

For the future, we intend to test this approach with a multidimensional

projection that uses control points, as the LAMP (Joia et al., 2011), for

example. We also plan to apply this technique to 2D and 3D temporal vector

fields.
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